

I COREFOR 2017

I CONGRESO REGIONAL FORESTAL DEL BOSQUE SECO TEMA: DEGRADACIÓN Y RESTAURACIÓN DEL BOSQUE SECO

IDENTIFICACIÓN MOLECULAR DE MICROORGANISMOS ASOCIADOS A LA RIZOSFERA Y FILOSFERA DE LOS GUAYACANES (TABEBUIA CHRYSANTHA Y TABEBUIA BILLBERGII) Y EVALUACIÓN DE CEPAS AISLADAS EN EL PROCESO INICIAL DE DESARROLLO DE PLÁNTULAS

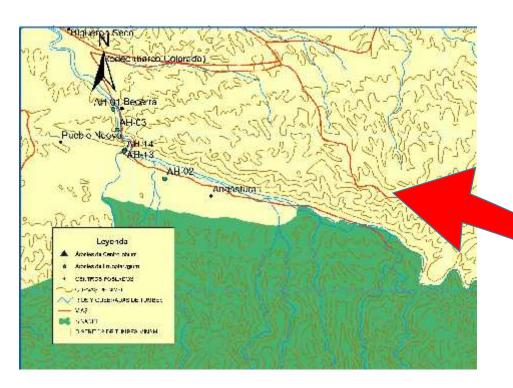
Autor: Ing. Luis Xavier Llacsa Sánchez
Forestal y Medio Ambiente
Biotecnología Forestal

PROBLEMÁTICA

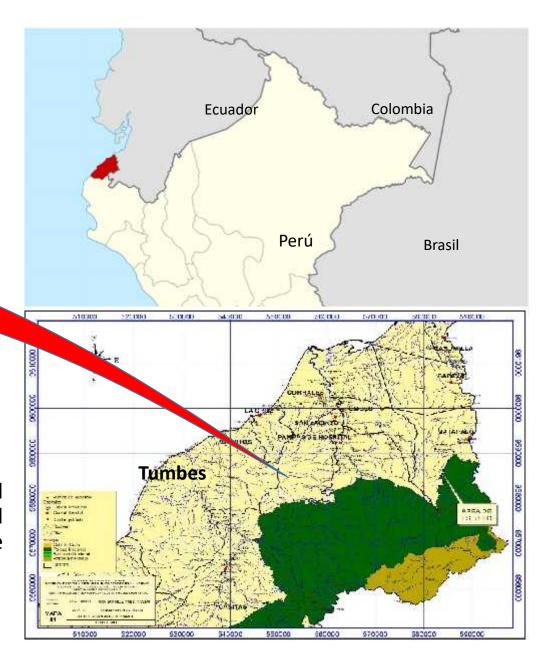
Tala selectiva

Uso tradicional

Ganadería



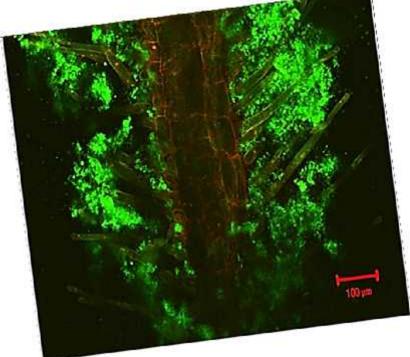
Agricultura migratoria


OBJETIVO

Identificar a nivel molecular microorganismos asociados con la rizósfera y filósfera de árboles nativos de guayacán (*Tabebuia chrysantha* y *Tabebuia billbergii*) y evaluar las cepas aisladas en el proceso inicial del desarrollo de plántulas en la Región Tumbes-Perú.

AREA DE ESTUDIO

El muestreo se realizó de la Zona de Amortiguamiento del Parque Nacional Cerros de Amotape (PNCA) ubicado en el departamento de Tumbes, en el distrito de pampas de hospital, sector angostura.


METODOLOGÍA

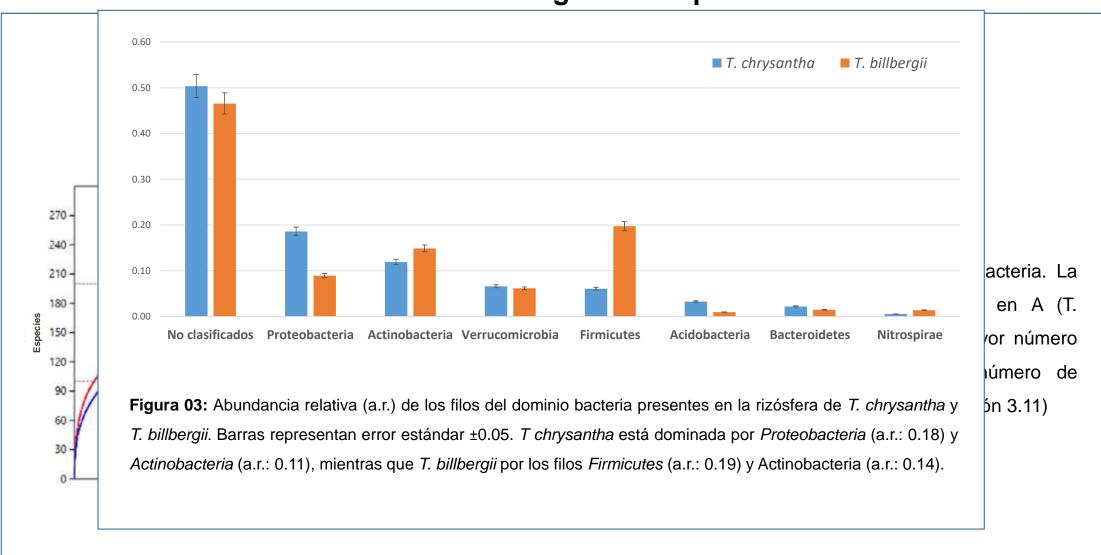
Desinfección de semillas

Caracterización molecular y análisis metagenómica

Aislamiento de bacterias y hongos cultivables de la rizósfera y filósfera Evaluación de la colonización

Formación de consorcios e Inoculación de bacterias en semillas

RESULTADOS


Tabla 1: Identificación molecular de bacterias de la filósfera y rizósfera de *Tabebuia chrysantha*

Сера	Tamaño secuencia	Identificación más cercana en Genbank	% de identidad	Fuente
HC1-A	939	Bacillus sp	99	Filosfera
НС1-В	1495	Bacillus subtilis subsp. spizizenii	100	Filosfera
HC-2-A	617	Bacillus pumilus	99	Filosfera
НС-2-В	1371	Bacillus sp	99	Filosfera
HC-3-A1	441	Pseudomonas stutzeri	100	Filosfera
HC-3-B2	1513	Bacillus amyloliquefaciens	99	Filósfera
HC-4	1466	Bacillus subtilis	99	Filosfera
RD-12B	1489	Paenibacillus sp	99	Raíz
RG-12	243	Paenibacillus sp	96	Raíz
RS12-A	1476	Pseudomonas putida	99	Rizosfera
RS12-B	1484	Enterobacter cloacae	99	Rizosfera
RTC 6 A	747	Bacillus thuringiensis	100	Raíz
STC 6 B	449	Serratia marcescens	84	Rizosfera
TCS 1-E	1112	Acinetobacter johnsonii	99	Rizosfera
TCS1-A	1490	Bacillus amyloliquefaciens subsp. Plantarum	99	Rizosfera
TCS1-B	780	Exiguobacterium profundum	97	Rizosfera
TCS1-C	1427	Lysinibacillus fusiformis	98	Rizosfera
TCS1-F	1266	Bacillus cereus	99	Rizósfera

Tabla 2: Identificación molecular de bacterias de la filósfera y rizósfera de *Tabebuia billbergii*

Сера	Tamaño secuencia	Identificación más cercana en Genbank	% de identidad	Fuente
HS	1504	Bacillus firmus	100	Filósfera
HS-15D	961	Bacillus subtilis	98	Filósfera
HS24-B	1463	Bacillus sp	99	Filósfera
HS24-C-1	1360	Bacillus cereus	100	Filósfera
HSTB-6 B1	724	Pseudomonas sp	99	Filósfera
STB-12 A1 C	622	Enterobacter sp	95	Rizósfera
STB-12 A1A1	605	Enterobacter sp	92	Rizósfera
STB-12 A2A	678	Klebsiella variicola	95	Rizósfera
STB-12 D	732	Pseudomonas sp	100	Rizósfera
STB-25 A1B1	728	Pseudomonas sp	100	Rizósfera
STB-25 A1B2	741	Pseudomonas sp	99	Rizósfera
STB-25 B1B	730	Azotobacter tropicalis	98	Rizósfera
STB-25 E1A	733	Pantoea agglomerans	96	Rizósfera
STB-25 E2A	741	Acinetobacter pittii	99	Rizósfera
STB-25 G1B	733	Klebsiella pneumoniae	100	Rizósfera

Análisis metagenómico para bacterias de la rizósfera

Consorcios establecidos

Tabla 7: Consorcios de bacterias asociados a T. chrysantha

Grupo 1	Grupo 2	Grupo 3	Grupo 4	Grupo 5
Bacillus amyloliquefaciens	Serratia marcescens	Acinetobacter johnsonii	A. johnsonii	S. marcescens
Pseudomonas putida	Exiguobacterium profundum	E. profundum	Lysinibacillus fusiformis	L. fusiformis
	Bacillus cereus	B. cereus	E. cloacae	E. cloacae
	Enterobacter cloacae	E. cloacae	Paenibacillus sp	Paenibacillus sp
	Paenibacillus sp	Paenibacillus sp	P. putida	P. putida
	P. putida	P. putida		

Tabla 8: Consorcios de Bacterias asociados a T. billbergii

Grupo 1	Grupo 2	Grupo 3
Klebsiella variicola	K. variicola	K. variicola
Enterobacter sp	Enterobacter sp	Acinetobacter pittii
Pseudomonas sp (STB 12D)	Pantoea agglomerans	P. agglomerans
Pseudomonas sp (STB 25A)	Pseudomonas sp (STB 25A)	Pseudomonas sp (STB 25A)
A. tropicalis	A. tropicalis	A. tropicalis

Efecto sobre el crecimiento de las plántulas de las bacterias inoculadas en semillas de *T. billbergii*

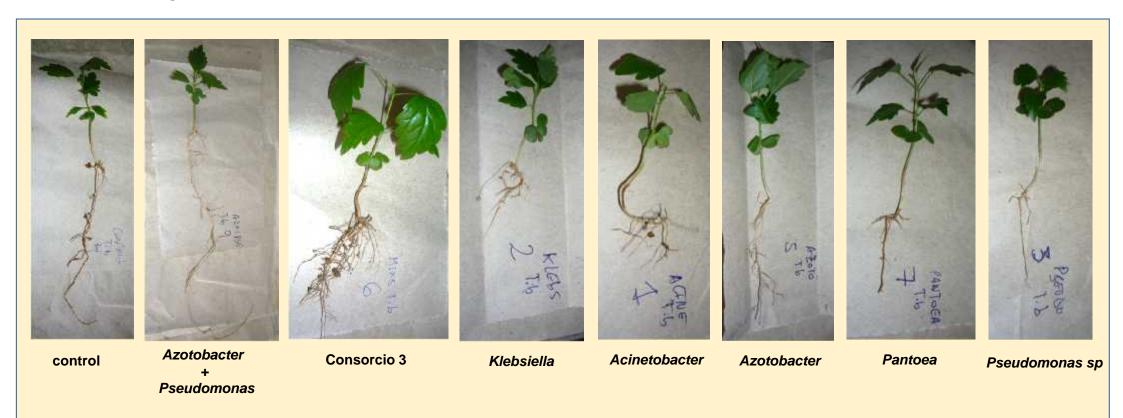
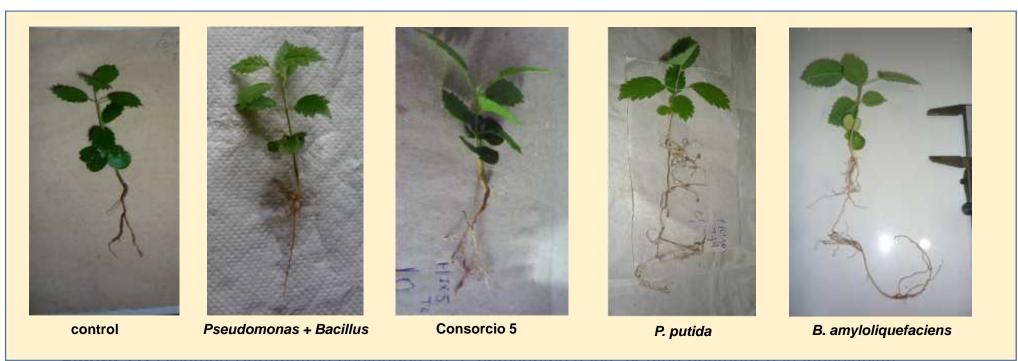
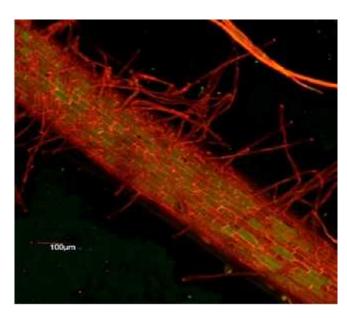



Figura 10: Diversos Parametros evaluados en 1. bilibergil a los 28 días posterior a la inoculación, el consorcio 03 está formado por por Klebsiella variicola, Acinetobacter pittii, Pantoea agglomerans, Pseudomonas sp y Azotobacter tropicalis

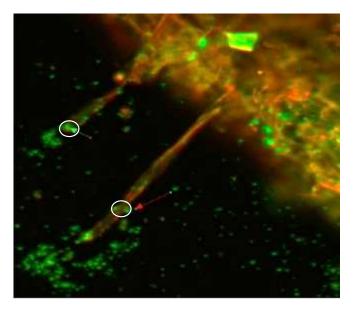
Ing. Luis Llacsa Sánchez

BIOTECNOLOGÍA FORESTAL

Efecto sobre el crecimiento de las plántulas de las bacterias inoculadas en semillas de *T. chrysantha*



el consorcio 05 por Serratia marcescens, Lysinibacillus fusiformis, Enterobacter cloacae, Paenibacillus sp y Pseudomonas putida.


Ing. Luis Llacsa Sánchez

BIOTECNOLOGÍA FORESTAL

Observación de la colonización de hongos y bacterias en raíces de plántulas de *Tabebuia billbergii*, mediante microscopía confocal de barrido laser

Figura 15. Microfotografía confocal de la colonización del hongo *Aspergillus sp* en la raíz principal de plántulas de *Tabebuia billbergii*., teñidas con Bromuro de Etidio, después de 28 días de inoculadas

Figura 16. Microfotografía confocal de la colonización de *Pseudomonas* sp en los pelos radicales de las raíces laterales de plántulas de *Tabebuia billbergii.*, teñidas con acridine orange, después de 28 días de inoculadas

biotecoop@gmail.com Calle Filipinas 241 Tumbes, Perú Telf.: 072 633430

BIOTECNOLOGÍA FORESTAL

Luis Llacsa Sánchez Teléfono: 972722987 saenzllac@Gmail.com

Skype: saenzllac

